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Abstract

A modified sequential approach is proposed to improve the performance of the sequential function specification

method for inverse heat conduction problems (IHCPs). There are two essential procedures in this study: the first,

derives the sequential algorithm and then performs the preliminary estimation; the second, also a key finding in this

study, proposes the modified algorithm to eliminate the leading error caused by adding the use of future information in

the process of preliminary estimation. One example in this study for solving the unknown source, the proposed method

effectively reduces the average relative error from 17.82% to 2.65% when a 10% random measurement error is con-

sidered.
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1. Introduction

For the requirement of industrial designs and man-

ufacturing procedures, some essential thermodynamic

parameters that are not obtainable from direct mea-

surements. These parameters, for instance, the strength

of heat source, the interior or boundary temperature, the

surface heat flux, the thermal property, and the geome-

try boundary, can be obtained by numerical computa-

tion when some measurable data are implemented. The

determination of the unknown thermodynamic para-

meters is classified into the field of the inverse heat

conduction problem (IHCP).

The IHCP is an ill-posed problem, namely a small

input disturbance would lead to a large output error or

improper dispersion. Therefore, diminishing the insta-

bility caused by the ill-posed feature is crucial for esti-

mating the undetermined parameters in an inverse

problem. Over the past few decades, some authors had
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been presented several methods in improving the sta-

bility of IHCP [1–4]. Where the method of sequential

function specification associated with several future

temperatures, proposed by Beck et al. [1], indicates that

the use of several future times, r > 1, greatly improves

the stability of ill-posed problem for IHCP and sub-

stantially reduces the sensitivity to measurement errors.

The formulation has been used widely in many studies of

inverse problem. For instance, Yang [5–7] employed the

method to determine interior source and mix-typed

boundary conditions, Videcoq and Petit [8] utilized it to

propose a model reduction approach, instead of using a

detailed model of large size, to estimate the inverse heat

flux problem, Kim and Lee [9] applied it to estimate the

time-varying heat transfer coefficient for the nonlinear

IHCP, and Chantasiriwan [10] applied it to estimate the

time-dependent Biot number. Additionally, some other

authors also applied the method to determine the un-

known parameters of inverse problem and obtained

many referable results [11–13]. The advantages of the

sequential function specification method (SFSM) are

that it is easy to analyze, it does not require any iterative

processes or prior information about the unknown

function, and it can determine all unknown parameters
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Nomenclature

½A� coefficient matrix of temperature

½B� transform matrix

½D� matrix, ½D� ¼ ½A��1

fTg temperature vector

M sensitivity matrix

Q heat source

T temperature

T0 initial temperature

Y measured temperature

r number of future time steps

t temporal coordinate

u denote the component of ½D�kþ1fT n�1g
x Cartesian coordinate

Greek symbols

a approximate slope

b estimated amplitude of step function

u heat source

c denote the component of
Pkþ1

a¼1½D�
a½B�

k random real number between 1 and )1
r standard deviation of measurement error

ŵ estimated source strength

Dt increment of temporal domain

Dx increment of spatial domain

H vector

Subscripts

i spatial coordinate

q spatial coordinate of heat source

Superscripts

a index

k, n temporal coordinate

r number of future time steps
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simultaneously and, as a result, it provides good com-

putational efficiencies. The basic procedures of the

SFSM are to use the future temperature information

and the temporal assumption that the undetermined

parameter is, for example, a constant, a time-dependent

linear variation, or a parabolic form, over the future

time steps. Such an operation is an efficacious one for

improving the stability, but comparatively, some factors

still need to be discussed as following:

• The temporary assumption of the undetermined

parameter is a constant, a time-dependent linear var-

iation, or some other forms over the future time

steps, which might not match the character of the

undetermined parameter exactly, would cause a sys-

tematic ‘‘leading error’’ that caused due to the use

of future temperatures to compute the present

parameter. Consequently, the leading error is differ-

ent from the error caused by random measurement

error.

• The leading error exists when the future information

is used. Even if the assumed condition is exactly

equal to the undetermined parameter over the used

interval of future times, the estimated error will still

appear on those time steps before the slope of unde-

termined parameter is variant.

• The stability of solution of the IHCP is improved

progressively by increasing the number of future

times. In contrast, the leading error also rises depend-

ing closely on the increase of number of future times.

Consequently, for avoiding the large leading error

appearance, Beck et al. [1] refer to that the value of

future time number is commonly chosen to be about

3 or 4. Nevertheless, when the measurement error is
considered, more future times is often essential to

obtain a stable estimation.

Based on the above features, the modified algorithm

for sequential function specification method (MSFSM)

is proposed in this paper to provide an expectantly

accurate and stable estimation of the solution. There are

two distinct aspects of this study: One is to derive the

sequential algorithm in order to launch the calculation

of undetermined parameter. The other is to propose the

modified algorithm to eliminate the leading error that is

caused by incorporating future times in the SFSM. An

implication from the different viewpoint is that by using

the proposed method can avoid having to use only a

small number of future time steps, and hence induces a

significant instability of the solution, solely for the

purpose of avoiding the leading error. Consequently, the

accuracy and stability can be improved effectively by

using the proposed method. Four examples are applied

in this paper to demonstrate the characteristics and

performances of the proposed method.

The approach in this study is first to utilize finite

difference method (FDM) to discrete the governing

equation firstly, and then to derive an inverse sequential

algorithm. Next, the formulation of future time and the

temporary assumption of constant source over an arbi-

trary number of future time steps are applied in order to

get a stable, but inaccurate, result. Finally, a modified

procedure is employed to eliminate the leading error and

obtain an accurate and stable estimation. It should be

noted that the assumption of a constant source is not

necessary to be applied: other assumptions, such as a

time-dependent linear or parabolic function, are possible

and have a similar effect.
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The main features and characteristics of this study

are summarized as follows:

• The sequential function specification method is a ro-

bust method for solving undetermined parameters in

the IHCP. A problem, however, is that a high stabil-

ity of estimation can cause a large leading error.

• For improving the stability of estimation when the

measurement error is considered, it is indispensable

to use more future information. An additional effect,

however, is that the leading error enlarges gradually

upon increasing the number of future time steps.

• The method proposed in this study can eliminate the

leading error and lead to an accurate estimation.

Four examples are employed to demonstrate the util-

ity of this method.

• Owing to superior stability can be obtained by

increasing the number of future times and since the

leading error can be eliminated effectively by this pro-

posed method, so that the accurate and stable estima-

tion can be obtained even if the measurement error is

not slight.

• The characteristics of this proposed method are that

no prior ideal conditions and iterative processes are

need, good computational efficiency and reliability

ensues, and that it can be applied to estimating an

undetermined parameter having an arbitrary func-

tional form.
2. Mathematical formulation of the proposed method

Consider a one-dimensional object having the

dimensionless length L. Both of the two ends of the object

are adiabatic. The initial temperature of the object and

the surrounding temperature are T0. As a specific time

t ¼ 0, one heat source Q that is a function of time acts at

the coordinate position x ¼ xq. Based on the description,

the dimensionless governing equation and the initial and

boundary conditions can be presented as follows:
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The subscript q denotes the spatial coordinate of the

heat source. For the sake of simplification, all the ther-

mal properties in this problem are considered to be

constant. In order to perform the numerical operation,

the proposed method utilizes the FDM to discretize both

spatial and temporal coordinate in this study.

T k
i�1 � 2T k

i þ T k
iþ1

ðDxÞ2
þ QðtÞdðx� xqÞ ¼

T k
i � T k�1

i

Dt
: ð4Þ

In Eq. (4), the subscript i denotes the grid position in x
coordinate and superscript k denotes the number of the

time index. By rearranging Eq. (4), a vector expression,

Eq. (5), is readily derived in which [A] and [B] are the

coefficient matrices of temperature distribution vector

fTg and the undetermined source vector fukg.

fT kg ¼ ½A��1fT k�1g þ ½A��1½B�fukg
¼ ½D�fT k�1g þ ½D�½B�fukg; ð5Þ

where

½D� ¼ ½A��1:

A numerical operation approximation [6] needs to be

established to solve the unknown parameter. For this

reason, a matrix form of the numerical operation at a

specific time gird n is required and is shown as Eq. (6).

The item r is the number of used future times and

fT ng; fT nþ1g; . . . ; fT nþr�2g, fT nþr�1g indicate the tem-

perature distributions of time tn, tnþ1; . . . ; tnþr�2, tnþr�1,

respectively. It is very significant that the construction of

Eq. (6) is really improper and not the anticipated form

for the estimation, as a result of the large multitude of

elements, and that it will lead to an inefficient compu-

tation. In other word, Eq. (6) must be improved in order

to obtained a practicable operation:
The temperature data T n
i ; T

nþ1
i ; . . . ; T nþr�2

i ; T nþr�1
i , mea-

sured at a position x ¼ xi and various time girds, are
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used to compute the unknown source. Consequently, the

following component equations can be listed:

T n
i ¼ u0i þ cniu

n; ð7Þ

T nþ1
i ¼ u1i þ cnþ1

i un þ cniu
nþ1; ð8Þ

. . .

T nþr�2
i ¼ ur�2

i þ cnþr�2
i un þ cnþr�3

i unþ1 þ � � �
þ cnþ1

i unþr�3 þ cniu
nþr�2; ð9Þ

T nþr�1
i ¼ ur�1

i þ cnþr�1
i un þ cnþr�2

i unþ1 þ � � �
þ cnþ1

i unþr�2 þ cniu
nþr�1; ð10Þ

where uki ¼ ei � ½D�kþ1fT n�1g, cnþk
i ¼ ei �

Pkþ1

a¼1½D�
a½B� and

k is an integer between 0 and r � 1, and ei is the unit row
vector with a unit at ith component.

To stabilize the computational results, the temporary

assumption of a constant source is assumed over the

used future times. When t ¼ tn, the unknown parameters

un, unþ1; . . . ;unþr�2, unþr�1 in Eqs. (7)–(10) are equal

and defined as Eq. (11):

un ¼ unþ1 ¼ � � � ¼ unþr�2 ¼ unþr�1: ð11Þ

Applying the assumption in (11), Eqs. (7)–(10) can be

rearranged to derive Eqs. (12)–(15). It is worthy to be

emphasized that even though Eq. (11) is a temporarily

inexact assumption, it is effective to stabilize the com-

putational result. Comparatively, such assumption

would lead to a specific error that grows closely in

relation to the amount of future information used.
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n; ð12Þ
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ð14Þ
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i þ � � � þ cnþ1
i þ cni Þun:

ð15Þ

For numerical computation, Eqs. (12)–(15) can be

rearranged into the following form:

H ¼ Mw; ð16Þ
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; w ¼ fung:

Then the undetermined strength of heat source can be

estimated in each time step by applying the linear least-

squares error method

ŵ ¼ ðMTMÞ�1MTH; ð17Þ

where ðMTMÞ�1MT is defined as a reverse matrix. Con-

sequently, the iterative procedure in the problem can be

avoided. Moreover, the rank of reverse matrix is avail-

able to indicate that the least-squares solution can be

approximated.
3. Modified sequential algorithms based on preliminary

estimation

The results of many authors’ studies show that the

use of future information could mitigate the fluctuant

estimation resulted from an ill-posed feature when

the input error is considered. Additionally, the greater

the number of future time steps causes the estimation in

the whole time domain to be more smooth and stable.

As the prior description, combining Eqs. (12)–(15) with

the future temperatures and the assumption of the

constant source strength results in a stable computa-

tional result that is obtained by the linear least-squares

error method. Nevertheless, because the assumption of

the constant source strength is different from the exact

form of the undetermined source, the variance grows

increasingly with the number of future time steps. In

other word, the leading error increases as the number of

future time step is added. On the other hand, contra-

dictorily, using fewer future times to prevent producing

significant leading error might lead to a fluctuant esti-

mation, as displayed in Fig. 1(a).

Fig. 1(b) shows the results of estimation with various

numbers of future time steps. It is very clear that the

number of future time has a positive effect on the esti-

mating stability and a negative effect on the leading

error. This phenomenon would not appear when the

temporary assumption about the function of undeter-

mined parameter in the computational procedure is ex-

actly matching. As a matter of fact, this anticipation is

impracticable. Consequently, the simple assumption of a

constant parameter is commonly used, as it is in this

study. The following procedures are to propose the

formulations for modifications having various func-

tional forms of heat source.
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Fig. 1. The estimation in sequential function specification method (SFSM) with 3% measurement error (a) r ¼ 3; insufficient future

time steps (b) r ¼ 6, 12.
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3.1. Case A: triangular source

Fig. 2(a) shows the computational result of an unde-

termined triangular source by SFSM with 3% random

measurement error and r ¼ 15. This result provides a

description about the existence of both considerable

leading error and slight fluctuation of the solution. As

mentioned above, the contradictory finding is that amore

stable solution would lead to a more significant leading

error. In this situation, the proposed method is first to

find the piecewise approximate slope. Consequently, as

Fig. 2(a) shown, two fitting lines L1 and L2 are con-

structed based on the result of the preliminary estimation

and the correlation of the estimated undetermined source

over the piecewise interval can be listed as follows:

unþ1 ¼ un þ Dt � a; ð18Þ

unþ2 ¼ un þ 2Dt � a; ð19Þ
. . .

unþr�2 ¼ un þ ðr � 2ÞDt � a; ð20Þ

unþr�1 ¼ un þ ðr � 1ÞDt � a; ð21Þ
where r, Dt, and a denote the number of future times, the

time increment, and the piecewise approximate slope

based on the result of the preliminary estimation,

respectively.

Here, some problem should be noticed, such as how

to discriminate the functional form of the undetermined

source and why the type of piecewise constant slope was

chosen in this case. It is not difficult to find the answer

from the result of the preliminary estimation (see Fig.

2(a)). Moreover, the greater number of future times can

be utilized to provide a considerably stable computa-

tional result and that is available to discriminate the

functional form of the source strength. Additionally, if
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Fig. 2. The estimation in Case 3.1: (a) the preliminary estima-

tion using SFSM, (b) the modified estimation using the modi-

fied sequential function specification method (MSFSM).
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Fig. 4. The preliminary estimation by SFSM in Case 3.3.
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needed, computing the temperature distribution can re-

check the modified result.

By substituting Eqs. (18)–(21) into Eqs. (7)–(10), Eqs.

(12)–(15) are modified as follows:

T n
i ¼ u0i þ cniu

n; ð22Þ

T nþ1
i ¼ u1i þ Dt � a� cni þ cnþ1

i

�
þ cni

�
un; ð23Þ

. . .

T nþr�2
i ¼ ur�2

i þ ðr � 2ÞDt � a� cni þ ðr � 3ÞDt � a� cnþ1
i

þ � � � þ 2Dt � a� cnþr�3
i þ Dt � a� cnþr�2

i

þ cnþr�2
i

�
þ c:nþr�3

i þ � � � þ cnþ1
i þ cni

�
un;

ð24Þ

T nþr�1
i ¼ ur�2

i þ ðr � 1ÞDt � a� cni þ ðr � 2ÞDt � a� cnþ1
i

þ � � � þ 2Dt � a� cnþr�2
i þ Dt � a� cnþr�1

i

þ cnþr�1
i

�
þ c:nþr�2

i þ � � � þ cnþ1
i þ cni

�
un:

ð25Þ
Eqs. (22)–(25) are the modified sequential function

specification algorithms. The closed approaching esti-

mation of undetermined heat source strength can be

obtained by using the linear least-squares error method

in each time step, as shown in Fig. 2(b).

3.2. Case B: stepped source––slope ! 1 at some specific

times

Fig. 3 shows the computational result of an unde-

termined stepped source by SFSM under conditions of

3% random measurement error and r ¼ 12. Because of

the constant heat source assumption, the leading error is

appearing in the adjoining time steps in that the step

response acting, and the number of affected time steps is

with respect to the number of future time. The proposed

modification is to find the approximate amplitude of

step response based on the preliminary estimation over

the time domain, except the time steps with significant
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Fig. 5. The estimation in Example 1: (a) r ¼ 3, insufficient fu-

ture time steps; (b) r ¼ 15, preliminary stable estimation by

SFSM; (c) r ¼ 15, modified estimation by MSFSM.

Table 1

The comparison of estimated strength of source in Example 1

Time step

no.

Exact SFSM MSFSM

r ¼ 6 r ¼ 15 r ¼ 15

5 0.4 0.4099 0.4911 0.3913

10 0.6 0.5933 0.6622 0.6090

20 1 0.9725 1.0289 1.0139

30 1.4 1.4964 1.3933 1.389

40 1.8 1.6799 1.7668 1.7726

50 2.2 1.9617 1.9677 2.2007

60 1.9 1.5757 1.833 1.8996

70 1.6 1.110 1.5706 1.5893

80 1.3 1.4625 1.3066 1.3119

Average

error

8.22% 7.05% 1.53%

L1 ¼ 0:2205þ 0:0190t, L2 ¼ 1:8605� 0:0153t
(a1 ¼ 0:0190, a2 ¼ �0:0153)
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leading error. The correlation of estimated undeter-

mined source can be modified as Eq. (26):

�
u ¼ uþ b; ð26Þ
where u� is the average strength over the time steps with

the step response rising, u is the average strength with-

out the step response acting, and b is the average

amplitude. Substituting Eq. (26) into Eqs. (7)–(10) and

then using the linear least-squares error method is

capable of obtaining a good modified result.

3.3. Case C: parabolic slope

Fig. 4 shows the computational result of an unde-

termined parabolic source by SFSM under conditions of

3% random measurement error and r ¼ 12. In the case

of source with a time-dependent slope (source strength

with respect to time) is not appropriate to use the

methods in Cases 3.1 and 3.2 to eliminate the leading

error for two reasons. The first is that the procedure of

curve-fitting solutions of the preliminary estimation

would generally bring about a significant error. The

other reason is that the exact slope of the function of the

undetermined source at a specific time cannot be found

from the information of the preliminary estimation be-

cause of the leading effect. The solution of preliminary

estimation is available, however, and the correlation of

the source strength at a specific time can be listed as Eq.

(27). Consequently, one of the practicable approaches is

to substitute Eq. (27) into Eqs. (7)–(10) and then utilizes

the linear least-squares error method to obtain the

modified result.

unþi ¼ un þ Dunþi ði ¼ 1; 2; . . . ; r � 1Þ: ð27Þ

The other practicable approach is to use the concept of

leading difference as Eq. (27) where m denotes the

leading number of time steps and is less than r � 1. The

optimal value can be obtained only several times of trial

and error:

Dunþi ¼ unþiþm � unþm ði ¼ 1; 2; . . . ; r � 1Þ: ð28Þ



0 10 20 30 40 50 60 70 80
0.0

0.3

0.6

0.9

1.2

1.5
 Exact
 σ=3%, r=6 

So
ur

ce
 S

tre
ng

th
 Q

(t)

Number of Time Steps

0 10 20 30 40 50 60 70 80
0.0

0.3

0.6

0.9

1.2

1.5

So
ur

ce
 S

tre
ng

th
 Q

(t)

Number of Time Steps

 Exact

0 10 20 30 40 50 60 70 80
0.0

0.3

0.6

0.9

1.2

1.5

So
ur

ce
 S

tre
ng

th
 Q

(t)

Number of Time Steps

 Exact
 Modified =3%, r=15 

σ=3%, r=15 

σ

(a)

(b)

(c)     

Fig. 6. The estimation in Example 2: (a) r ¼ 3, insufficient future time steps; (b) r ¼ 15, preliminary stable estimation by SFSM;

(c) r ¼ 15, modified estimation by MSFSM.
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4. Results and discussion

In this section, four cases are described in which have

various functional forms of the source are used to
demonstrate that the proposed method can be employed

to solve the IHCP and yield stable and accurate com-

putational results. All the examples assume that one

undetermined time-dependent source acts at the center



Table 2

The comparison of estimated strength of source in Example 2

Time step

no.

Exact SFSM MSFSM

r ¼ 6 r ¼ 15 r ¼ 15

10 0.5 0.5052 0.5398 0.5027

15 0.5 0.4919 0.6789 0.4997

20 1 0.7694 0.8012 1.0036

30 1 1.0726 0.9472 1.0024

40 1 0.9581 0.9656 0.9780

50 1 1.1368 1.0186 1.0078

60 1 1.3022 0.8915 1.0126

70 0.5 0.6640 0.5974 0.4855

80 0.5 0.4729 0.5802 0.5301

Average

error

15.87% 15.12% 2.43%

u� ¼ 0:9854, u ¼ 0:5142, u� � u ¼ 0:4712
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of the observed object. For numerical computation, the

dimensionless length of this object is unity. Meanwhile,

the computational spatial increment is 0.1 and the time

increment is 0.02. The measured position is set on one of

the boundaries of the object. Additionally, the simulated

temperature in this study is generated from the exact

temperature and is assumed with random measurement

errors, as shown in Eq. (29).

Y n
i ¼ T n

i ð1þ k� rÞ; ð29Þ

where T n
i and Y n

i denote the exact and measured tem-

perature at spatial gird x ¼ xi and temporal gird

t ¼ tn, respectively. The term r is the standard deviation

of the measurement errors and k is a random real

number between )1 and 1, so that Eq. (29) describes

an unpredictable error in the measurement of tempera-

ture.

Example 1. This example is to estimate the strength of

one triangular source. Here, 3% random measurement

error is considered. The functional form of heat source is

presented as follows:

QðtÞ ¼ 0:2þ 2t; 06 t6 1:0;

QðtÞ ¼ 2:2� 1:5t; 1:0 < t:

About the form and strength of the undetermined

source, we know nothing before the inverse algorithm is

performed. Consequently, the preliminary estimation is

operated firstly, under the conditions of the temporary

assumption of a constant strength of heat source and

r ¼ 6, and the sequential algorithms that were derived in

the above section are applied. Fig. 5(a) shows the com-

putational result is fluctuant and so a greater number of

future time steps should be employed. Obviously, the

result displayed in Fig. 5(b), in which r ¼ 15 is used, is

much more stable than that in Fig. 5(a), but the leading

error is also enlarged comparatively. To improve the

accuracy and reliability, the leading error must be

eliminated under a stable solution.

The proposed modified method is applied to improve

the inconsistent characteristic. From Fig. 5(b), it could

be convinced that the undetermined source might be a

piecewise linear function. Hence, based on the result of

the preliminary estimation, apply the modified algo-

rithm in Case 3.1 to obtain two piecewise approximate

slopes a1 ¼ 0:0190 and a2 ¼ 0:0153 with r ¼ 15. These

approximate slopes are available and are substituted

into Eqs. (22)–(25). A accurate estimation can then be

obtained readily. This result is shown in Fig. 5(c).

Table 1 displays a comparison of the computational

results for Example 1 that were obtained using various

conditions. It is clear that the average error by SFSM

with r ¼ 6 and r ¼ 15 are 8.22% and 7.05%, respectively.
When r ¼ 15, the computational result is more stable

than that of r ¼ 6, but the average error is not better; on

the contrary, it is worse, as a result of the leading error.

The above two cases verify the inconsistent phenomenon

mentioned earlier. Comparatively, the proposed method

provides a highly accurate and stable estimation with an

average error of only 1.53%.

Example 2. This example describes the estimation of the

undetermined strength of source with a stepped char-

acteristic. Similarly, 3% random measurement error is

also considered here, as it was in Example 1. The heat

source is assumed as follows:

QðtÞ ¼ 0:5 06 t

QðtÞ ¼ 1:0 46 tK 1:3

QðtÞ ¼ 0:5 1:36 t

Fig. 6(a) displays the fluctuant computational result

obtained when the insufficient future times (r ¼ 6) are

used. Fig. 6(b) presents the stable computational result

obtained when a greater number of future time (r ¼ 15)

is used, but the leading error also appears to be signifi-

cant in the adjoining time steps of 20th time step and

65th time step. Such error must be eliminated reason-

ably. From the result of preliminary estimation as

shown in Fig. 6(b), an unit source form is supposed and

the amplitude of step response of source can be evalu-

ated and it equals 0.4712. This result is available to

modify the leading error as in the description of Case

3.2. The modified result is presented in Fig. 6(c) and it is

much better than the result in Fig. 6(b) as the leading

error is fully eliminated. Table 2 displays a comparison

between the computational results for Example 2 that

are obtained by the SFSM and MSFSM. The average
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error is reduced significantly to only 2.43% when using

the MSFSM.
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Fig. 7. The estimation in Example 3: (a) r ¼ 3, insufficient future t

(c) r ¼ 15, modified estimation by MSFSM.
Example 3. This example discusses an estimation of the

undetermined strength of heat source with a time-
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ime steps; (b) r ¼ 15, preliminary stable estimation by SFSM;



Table 3

The comparison of estimated strength of source in Example 3

Time step

no.

Exact SFSM MSFSM

r ¼ 5 r ¼ 15 r ¼ 15

5 0.56176 0.5429 0.5950 0.5488

10 0.583 0.5566 0.6454 0.6022

20 0.78844 0.7837 0.7583 0.8198

30 0.74708 0.6652 0.6032 0.7337

40 0.28977 0.2815 0.3172 0.2391

50 0.22305 0.2347 0.4589 0.2553

60 0.91157 0.9628 0.8898 0.8959

70 1.2513 0.8957 0.8873 1.1838

80 0.4376 0.4437 0.3172 0.4132

Average

error

16.99% 27.98% 4.21%

Table 4

The comparison of estimated strength of source in Example 4

Time step no. Exact SFSM MSFSM

r ¼ 24 r ¼ 24

5 0.4 0.6243 0.4014

10 0.6 0.7434 0.5873

20 1 1.1429 1.0665

30 1.4 1.4179 1.3817

40 1.8 1.7535 1.8221

50 2.2 1.7941 2.1814

60 1.9 1.6893 1.8792

70 1.6 1.4120 1.5050

80 1.3 1.2643 1.3099

Average error 17.82% 2.65%

L1 ¼ 0:3451þ 0:0193t, L2 ¼ 1:9204� 0:0147t
(a1 ¼ 0:0193, a2 ¼ �0:0147)
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dependent slope (source strength vs. time) characteristic.

Similarly, 3% random measurement error is also con-

sidered in this case. The heat source is assumed as fol-

lows:

QðtÞ ¼ 0:6þ 0:5t sin 7t
�

� p
2

�
; 06 t:

Fig. 7(a) displays the fluctuant computational result

that is caused by an insufficient future times used (r ¼ 5).

A much more stable computational result is obtained

when a greater number of future times (r ¼ 15) is used,

but the leading error is also enlarged comparatively.

From Fig. 7(b), the undetermined source conceivably

could be that a curve function, such as, a polynomial,

exponential, or trigonometric function. Consequently,

the modified procedures in Case 3.3 are applied and the

result is displayed in Fig. 7(c). Obviously, it is consid-

erably more accurate and stable than the result dis-

played in Fig. 7(b). Moreover, the computational

process is also efficient. Table 3 displays a comparison
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Fig. 8. The comparison of estimation result for SFSM and MSFSM
between the computational results. The average error is

clearly reduced from 16.99% or 27.98% to 4.21% by the

proposed method.

Example 4. In this example, the functional form of the

heat source strength is the same as that of Example 1,

but the random measurement error is 10%. It is note-

worthy that most of the presented studies in solving the

unknown parameters for IHCP are chosen with slight

random measurement error as a result of preventing to

obtain an unstable solution resulted from ill-posed

problem. Nevertheless, some factors in practical appli-

cation might result in significant measurement errors

because of, for example, obstructed or restrained mea-

surement, and the sensitivity of instrument. In this

example, r ¼ 24 is utilized to stabilize the computational

result by SFSM, and results in significant leading error.

Fig. 8 displays that a highly accurate and stable esti-

mation can still be obtained by the proposed method,
0 50 60 70 80

 Time Steps

 Exact
 =10%, r=24 
σ 
σ 

=10%, r=24 (Modified)

in Example 4, 10% random measurement error considered.
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even though the measurement error is not slight. This

improvement is also displayed clearly in Table 4. The

average error is reduced from 17.82% to 2.65%.
5. Conclusion

The SFSM is an effective method for solving the

IHCP. When the measurement error is considered, this

method is needed to combine with several future times

to stabilize the solutions. This process, however, causes

leading errors to appear and therefore decrease the

accuracy of the solutions. Additionally, the leading error

becomes progressively larger upon increasing the num-

ber of future times. This phenomenon restricts the per-

formance and efficiency of the SFSM.

This paper proposes a modified sequential method

that can deal with the determination of unknown

parameter for the IHCP efficiently and obtain a highly

accurate result. There are two essential procedures in the

proposed method: A preliminary estimation is first per-

formed by the use of the inverse sequential algorithms as

Eqs. (12)–(15) and the linear least-squares error method

as Eq. (17). The next, based on the result of preliminary

estimation applies the modified procedures that pro-

posed in this study to obtain an anticipated estimation.

Four examples, with various functional forms of the

undetermined heat source strength used in the first three

and larger measurement error used in the fourth, to

demonstrate the effectiveness, practicality, and reliability

of the proposed method. These functional forms include

a piecewise linear, a unit step, and a trigonometric

function. The results verify that the proposed method is

capable of solving the undetermined parameter for

various functional or mixed forms of the IHCP.

The main contribution of this study is a demonstra-

tion that the proposed method can be applied to solve

the IHCP under the inherent advantage of good com-

putational efficiency for the sequential method, and

provide a highly accurate and stable solution. Even the

random measurement error is not slight, for instance,

10% or more, the proposed method is still able to pro-

vide a considerably acceptable estimation.
The proposed method can be applied widely to other

inverse problems and provide a more accurate estima-

tion relative to those of previous methods. Certainly,

two- and three-dimensional inverse problems can also be

applied in similar manners.
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